

ExaWind Build Scripts User Manual

	Version

	v0.0.1

	Date

	Dec 13, 2020

ExaWind Builder [https://github.com/exawind/exawind-builder] is a collection
of bash scripts to configure and compile the codes used within the ExaWind [https://github.com/exawind] project on various high-performance computing
(HPC) systems. The builder provides the following

	Platform configuration: Provides the minimal set of modules that must be
loaded when compiling with different compilers and MPI libraries on different
HPC systems.

	Software configuration: Provides baseline CMake configuration that can be
used to configure the various options when building a project, e.g.,
enable/disable optional modules, automate specification of paths to various
libraries, configure release vs. debug builds.

	Build script generation: Generates an executable end-user script for a
combination of system, compiler, and project.

	Exawind environment generation: Generates a source-able, platform-specific
script that allows the user to recreate the exact environment used to build
the codes during runtime.

The build scripts are intended for developers who might want to compile the
codes with different configuration options, build different branches during
their development cycle, or link to a different development version of a library
that is currently not available in the standard installation on the system.

Contents

	Introduction
	Use cases

	Exawind directory structure

	Setting up exawind-builder
	Basic installation for all systems

	Setting up custom ExaWind python environment

	Initial Homebrew Setup for Mac OS-X Users

	Using exawind-builder to build software
	Configuring exawind-builder

	Compiling Software
	Available tasks in the build script

	Customizing the build process
	Customizing module load

	Enabling/Disabling TPLs

	Using custom builds of libraries

	Overriding default behavior
	Customizing ExaWind environment

	Customizing CMake configuration phase

	Activating ExaWind environment for job submissions

	Adding new system configuration
	Determine system configuration

	Create skeleton directory structure

	Create minimal bootstrap environment

	Create Spack configuration
	Spack compiler configuration

	Spack package configuration

	Spack config.yaml

	Create system environment configuration

	Run bootstrap

	Manual Installation
	Setting up dependencies
	Install dependencies via spack (all systems)

	Generate builder configuration

	Generating Build Scripts

	Creating runtime environment script

	Configuring exawind-builder to use Ninja

	Compiling Nalu-Wind

	Reference
	Configuration variables
	ExaWind Builder configuration

	Variables controlling project properties

	Variables controlling build process
	Common build variables

	Nalu-Wind

	OpenFAST

	Trilinos

	HYPRE

	Function reference
	User customization functions

	Core functions

	System specific functions

	Project specific functions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Exawind-builder is a set of bash functions that can be compiled to generate
build scripts for the software used in ExaWind [https://www.exawind.org]
project on the different systems of interest. It separates machine-specific
configuration from the software-specific configuration (tracking library
dependencies and CMake configuration) so that they can be modularized and
combined for different systems and compilers.

Pre-built configurations exist for the following systems. Use the system
name shown on the following table when generating scripts targeting that
particular system.

	System Name

	Description

	spack

	Spack [https:://github.com/spack/spack] (system agnostic)

	anl-jlse-skylake

	ANL JLSE Skylake [https://www.jlse.anl.gov]

	anl-jlse-gpu_v100_smx2

	ANL JLSE V100 nodes [https://www.jlse.anl.gov]

	ornl-summit

	OLCF Summit [https://www.olcf.ornl.gov/summit/]

	eagle

	NREL Eagle [https://www.nrel.gov/hpc/eagle-system.html]

	cori

	NERSC Cori [http://www.nersc.gov/users/computational-systems/cori/]

	summitdev

	OLCF SummitDev [https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/]

	snl-waterman.

	Sandia waterman cluster (also snl-waterman-atdm)

	snl-ghost

	Sandia Ghost cluster

	snl-skybridge

	Sandia Skybridge cluster

	snl-ascicgpu

	Sandia ASC GPU development machines

	snl-ceerws

	Sandia blade workstations

	snl-ews

	Sandia engineering workstations

	pnnl-constance

	PNNL Constance system

	rhodes

	NREL nightly build and test system

	peregrine

	NREL Peregrine [https://www.nrel.gov/hpc/peregrine-system.html]

The following compilers are configured for each machine. In situations where
multiple compilers are present, we recommend that the users use the first one.
The latter ones have not received enough testing and might have issues.

	Environment

	Compilers

	anl-jlse-skylake

	gcc

	anl-jlse-gpu_v100_smx2

	gcc, cuda

	ornl-summit

	gcc, cuda

	eagle

	gcc

	cori

	intel

	summitdev

	gcc, xl, cuda

	snl-waterman.

	gcc, cuda

	snl-ghost

	intel

	snl-skybridge

	intel

	snl-ascicgpu

	gcc, cuda

	snl-ceerws

	gcc

	snl-ews

	gcc

	pnnl-constance

	gcc

	rhodes

	gcc, intel

	Mac OSX

	clang, gcc

	peregrine

	gcc, intel

Exawind-builder provides CMake configurations for the following codes used
within the ExaWind project. Please consult Reference section for
configuration variables availble to customize configuration of each project.

	Nalu-Wind

	https://github.com/exawind/nalu-wind.git

	Trilinos

	https://github.com/trilinos/trilinos.git

	OpenFAST

	https://github.com/openfast/openfast.git

	Nalu Wind Utilities

	https://github.com/exawind/wind-utils.git

	TIOGA

	https://github.com/jsitaraman/tioga.git

	TIOGA Utilities

	https://github.com/sayerhs/tioga_utils.git

	pySTK

	https://github.com/sayerhs/pystk.git

	HYPRE

	https://github.com/LLNL/hypre.git

	hypre-mini-app

	https://github.com/exawind/hypre-mini-app.git

	ArborX

	https://github.com/arborx/ArborX.git

Use cases

The exawind-builder provides capability for three different workflows of
increasing complexity:

	The simplest use case is on a system where all the dependencies are managed
by the ExaWind team (e.g., NREL Peregrine, NERSC Cori, etc.). In this
scenario, the user just needs to clone the appropriate code repo and use the
build script to compile their desired branch with apporpriate CMake options.
This use case is described in Using exawind-builder to build software section.

	Depending on the task, users might need to use different branch of a
third-party library (TPL). For example, user might need a different branch of
OpenFAST or TIOGA when developing a new feature within Nalu-Wind. This will
require the user to maintain multiple development builds of the codes and
keep them all in sync. Customizing the build process provides information on how to
manage this workflow.

	Finally, the user might need to install and manage all dependencies
themselves, e.g., on their personal laptops. Setting up exawind-builder details
all the necessary steps to setup your own ExaWind environment and manage all
dependencies on different machines. This mimics the build-test [https://github.com/Exawind/build-test] infrastructure of ExaWind project,
but opts to use system configuration as much as possible to minimize build
time on dependencies.

Exawind directory structure

Exawind-builder recommends the organizing code under a standard directory
structure for ExaWind project. While it is not necessary to follow this
directory structure, and the user is free to call the build scripts from any
location, the standard directory structure will be used in the rest of the
manual. A brief description of the standard layout is presented here.

All source code, build directories, installation directories, and the
exawind-builder package itself is assumed to be located within
exawind base directory. Within this directory the main subdirectories
are shown below:

exawind/
├── exawind-builder
├── exawind-config.sh
├── install
│ ├── hypre
│ ├── tioga
│ ├── trilinos-omp
│ └── trilinos
├── scripts
│ ├── hypre-clang.sh
│ ├── nalu-wind-clang.sh
│ ├── tioga-clang.sh
│ └── trilinos-clang.sh
├── spack
└── source
 ├── hypre
 ├── nalu-wind
 ├── openfast
 ├── tioga
 ├── trilinos
 └── wind-utils

The sub-directories are:

	exawind-builder: The build script package cloned from the git repository
that contains scripts to configure and build codes on different systems. This
directory must be considered read-only unless you are adding features to
exawind-builder. This directory is not necessary if you are using one of the
central installations of ExaWind.

	spack: Optional location for Spack if using Spack to manage dependencies.
Not used on NREL systems – Peregrine, Eagle, and Rhodes.

	source: Local git repository checkouts of the ExaWind codes of interest to
the user. This is the recommended location for all the development versions of
the various codes (e.g., nalu-wind, openfast, etc.).

	scripts: The default build scripts for different project and compiler
combination. Users can either symlink the scripts into the build directory or
copy and modify them within different build directories (e.g., release vs.
debug builds). Use the new-script.sh utility to generate
these build scripts.

	install: The default install location where make install will install
the headers, libraries, and executables.

In addition to the sub-directories, users can also provide an optional
configuration file exawind-config.sh that can be used to customize
options common to building all the codes.

Setting up exawind-builder

Exawind-builder provides a bootstrap script that will create the exawind
directory structure, fetch necessary repositories, install dependencies, and
perform initial setup and configuration. Note that this step is just preparation
for being able to build nalu-wind and doesn’t install nalu-wind itself.
You will need to follow the additional steps mentioned in
Compiling Software.

Note

On NREL Peregrine, Eagle, and Rhodes, and NERSC Cori systems, the build
scripts are pre-installed and configured in the project directory. Users do
not have to install their own exawind-builder on these systems. On these NREL
systems, you can skip the installation steps and proceed to the
Compiling Software section. Please consult the Exawind team if you are
unsure where the build scripts are located on these systems.

For fine control of the installation process please refer to the
Manual Installation section.

Basic installation for all systems

To install using bootstrap script please follow these steps.

	Mac OS X users will need to have Hombrew packages installed as documented in
Initial Homebrew Setup for Mac OS-X Users.

	Download the bootstrap script

Download bootstrap script
curl -fsSL -o bootstrap.sh https://raw.githubusercontent.com/exawind/exawind-builder/master/bootstrap.sh
chmod a+x bootstrap.sh

	Execute the script by providing a target system and compiler – see
available target systems. If your target system is not
available, you can use the generic spack system which will fetch and compile
all necessary dependencies for you.

bootstrap.sh [options]

Options:
 -h - Show help message and exit
 -s <system> - Select system profile (spack, cori, summitdev, etc.)
 -c <compiler> - Select compiler type (gcc, clang, intel, etc.)
 -p <path> - Root path for exawind project (default: ${HOME}/exawind)
 -n - Configure exawind-builder to use ninja build system

A few examples are shown below

Invoke by providing the system specification
./bootstrap.sh -s cori -c intel # on NERSC Cori
./bootstrap.sh -s snl-ascicgpu -c gcc # On SNL ASC GPU machine
./bootstrap.sh -s summitdev -c gcc # On ORNL SummitDev

Example with a custom path
./bootstrap.sh -s cori -c intel -p ${HOME}/MyProjects/exawind

Upon sucessful execution, the bootstrap process will have created default build
scripts, an exawind configuration file (exawind-config.sh), and an
exawind environment file (scripts/exawind-env-COMPILER.sh). Please
verify the default values provided in exawind-config.sh and adjust them
if necessary. By default, the bootstrap script will not install Trilinos or
Nalu-Wind, these need to be manually installed by the user. Please proceed to
Compiling Software for instructions on how to compile Trilinos and
Nalu-Wind.

Note

	If you have multiple versions of the same compiler installed, then use
SPACK_COMPILER to set an exact specification that you will when
installing packages. For example, to use GCC 7.2.0 version instead of older
versions, it might be necessary to set SPACK_COMPILER=gcc%7.2.0 before
executing the bootstrap script.

	Ninja [https://ninja-build.org] is a build system that is an alternative
to make. It provides several features of make but is
considerably faster when building code. The speedup is particularly evident
when compiling Trilinos. Since codes used in ExaWind project contain
Fortran files, it requires a special fork [https://github.com/Kitware/ninja] of Ninja (maintained by Kitware). If
you have already executed bootstrap and forgot to add the -n flag, then
use Configuring exawind-builder to use Ninja to install Ninja for your use.

Setting up custom ExaWind python environment

exawind-builder now supports building certain Python packages (e.g., pySTK [https://sayerhs.github.io/pystk/index.html]. To enable this capability,
you’ll need to set up a custom virtual environment with the necessary python
modules. Currently, exawind-builder only supports the Conda [https://docs.conda.io/en/latest/index.html] python package manager. To enable this capability:

	Install Conda [https://docs.conda.io/en/latest/miniconda.html] if you
don’t have an existing conda installation.

	Create a new virtual environment using the create-pyenv.sh utility

cd ${EXAWIND_PROJECT_DIR}
./exawind-builder/create-pyenv.sh -s <system> -c <compiler> -r ${CONDA_ROOT_DIR}

Upon successful installation, this creates a new virtual environment exawind
with all the necessary Python modules to build and use ExaWind python libraries.

Initial Homebrew Setup for Mac OS-X Users

On Mac OS X, we will use a combination of Homebrew [https://brew.sh] and
spack [https://github.com/spack/spack] to setup our dependencies. This
setup will use Apple’s Clang compiler for C and C++ sources, and GNU GCC
gfortran for Fortran sources. The dependency on Homebrew is to avoid the
compilation time required for compiling OpenMPI on Mac. Please follow these
one-time installation process to set up your Homebrew environment.

	Setup homebrew if you don’t already have it installed on your machine. Follow
the section Install Homebrew at the Homebrew website [https://brew.sh].
Note that you will need sudo access and will have to enter your password
several times during the installation process.

	Once Homebrew has been installed execute the following commands to install
packages necessary for exawind-builder from homebrew.

Allow installation of brew bundles
brew tap Homebrew/brewdler

Fetch the exawind Brewfile
curl -fsSL -o Brewfile https://raw.githubusercontent.com/exawind/exawind-builder/master/etc/spack/osx/Brewfile

Install brew packages
brew bundle --file=Brewfile

Upon successful installation, please proceed to the Setting up exawind-builder section.

Using exawind-builder to build software

This section describes the basic steps to configure exawind-builder and use the
scripts provided to build software used within the ExaWind project.

Configuring exawind-builder

During execution, exawind-builder reads user configuration from various files
that provide fine-grained control of the build process. The default name for the
configuration file is exawind-config, but this can be configured by
modifying the EXAWIND_CFGFILE variable. exawind-builder will load the
following files in the specified order

${HOME}/.exawind-config # User configuration file
${EXAWIND_CONFIG} # File pointed to by the variable ${EXAWIND_CONFIG}
$(pwd)/exawind-config.sh # File in the local build directory

The configuration variables in the subsequent files will override the default
values as well as configuration variables set in the previous files. The second
file $HOME/exawind/exawind-config.sh assumes that you followed the
standard Exawind directory structure. Please replace the path appropriately
(EXAWIND_PROJECT_DIR), if you used a non-standard location for
installation. See also EXAWIND_CONFIG.

Note

	It is recommended that the user use local configuration files within build
directories to set variables instead of modifying the build scripts within
the exawind/scripts directory.

	If you are using a shared instance of exawind-builder (e.g., on NREL
Peregrine), then please use exawind-config.sh within your build
directory to override common configuration parameters.

Compiling Software

If you followed the bootstrap method described in Setting up exawind-builder, then
you should have build scripts for the different projects installed in
exawind/scripts directory. The scripts are named
$PROJECT-$COMPILER.sh. For example, the build script for nalu-wind
project on a system using GCC compiler suite will be called
nalu-wind-gcc.sh. With no arguments provided, the script will load all
necessary modules for compiling the code, execute CMake configuration step
followed by make.

Compiling software, therefore, consists of the following steps (see detailed
examples of trilinos and nalu-wind in the code snippets below that demonstrate
these steps):

	Clone the appropriate software repository into exawind/source
directory, e.g., nalu-wind. See note below on trilinos status for
certain systems.

	Create a CMake build directory. We recommend out-of-source builds for all software.

	Create a symbolic link to the apporpriate build script from
exawind/scripts directory.

	Create exawind/source/$project/build/exawind-config.sh, if necessary,
and set custom variables for this build. Examples include switching to debug
builds, or using different version of dependencies. If the configuration is
applicable to multiple codes that you are building, then consolidate the
common options in exawind/exawind-config.sh to avoid duplication.

	Add an entry in configuration file to override the
default version of software with your custom build version when compiling
other software, e.g., overriding the default version of HYPRE or OpenFAST –
see PROJECTNAME_ROOT_DIR for more details.

	Execute the build script (assuming you’ve all prerequisites, see note on
Trilinos below).

Note

On most systems, users will have to install Trilinos and Nalu-Wind manually.
For these systems, users must install Trilinos before attempting to build
nalu-wind and set TRILINOS_ROOT_DIR in
their configuration file. Exceptions to this
requirement are NREL Peregrine, Eagle, and Rhodes systems where Trilinos is
installed and maintained by the ExaWind team (Jon Rood).

For convenience, the list of commands necesssary to compile trilinos and
nalu-wind are provided below.

Preliminary setup
Adjust these variables apporpriately
export EXAWIND_PROJECT_DIR=${HOME}/exawind/
export COMPILER=gcc

#
Build trilinos first (if necessary)
#
Clone trilinos
cd ${EXAWIND_PROJECT_DIR}/source
Clone the repo
git clone https://github.com/trilinos/trilinos.git
Create a build directory
mkdir trilinos/build-${COMPILER}
Switch to build directory
cd trilinos/build-${COMPILER}
link the build script (change gcc appropriately)
ln -s ${EXAWIND_PROJECT_DIR}/scripts/trilinos-${COMPILER}.sh
Execute the script
./trilinos-${COMPILER}.sh
Install on successful build
./trilinos-${COMPILER}.sh make install
Instruct nalu-wind to use the new Trilinos location
echo 'export TRILINOS_ROOT_DIR=${EXAWIND_INSTALL_DIR}/trilinos' >> ${EXAWIND_PROJECT_DIR}/exawind-config.sh

#
Build nalu-wind
#
Clone nalu-wind
cd ${EXAWIND_PROJECT_DIR}/source
git clone https://github.com/exawind/nalu-wind.git
Create a build directory
mkdir nalu-wind/build-${COMPILER}
Switch to build directory
cd nalu-wind/build-${COMPILER}
link the build script (change gcc appropriately)
ln -s ${EXAWIND_PROJECT_DIR}/scripts/nalu-wind-${COMPILER}.sh
Execute the script
./nalu-wind-${COMPILER}.sh
Install on successful build
./nalu-wind-${COMPILER}.sh make install

Available tasks in the build script

The user can control which tasks are executed by providing additional parameters
to the script upon invocation as shown below:

./nalu-wind-gcc.sh [TASK] [ARGUMENTS]

The available tasks are:

	cmake: Configure the project using CMake and generate build files. By
default, it generates GNU Makefiles.

	cmake_full: Remove CMakeCache.txt and CMakeFiles before
executing CMake configuration step.

	make: Build the project libraries and executables.

	ctest: Execute CTest for this project.

	run: Run arbitrary shell command within the same environment (modules and
dependencies loaded) as when the project was compiled.

User can control the behavior of these
tasks by passing extra [ARGUMENTS] that are passed directly to the task
invoked. Some examples are shown below

Change CMake build type to DEBUG and turn on shared library build
./nalu-wind-gcc.sh cmake -DCMAKE_BUILD_TYPE=DEBUG -DBUILD_SHARED_LIBS=ON

Turn on verbose output with make and only build naluX (and not unittestX)
./nalu-wind-gcc.sh make VERBOSE=1 naluX

Only execute one regression test and enable output on failure
./nalu-wind-gcc.sh ctest --output-on-failure -R ablNeutralEdge

Note

	By default, make will execute several jobs in parallel. Users can
control the maximum number of parallel jobs by either setting the
environment variable EXAWIND_NUM_JOBS within the build script, or
using ./nalu-wind-gcc.sh make -j 12 to override the defaults.

	cmake_full accepts all valid CMake arguments that cmake command does.

	The cmake_output.log within the build directory contains the output
of the last cmake command that was executed. This output is also echoed
to the screen.

	The make_output.log contains the output from the last invocation of
make. This output is also simultaneously echoed to the screen.

Customizing the build process

The previous section showed how the execution of CMake and Make can be
customized to a limited extent by passing command line arguments with specific
tasks. However, for more complex customizations it is recommended that the user
use the configuration file to control the build process.
This approach allows the user to consolidate common build options, e.g.,
enabling/disabling OpenMP/CUDA, release/debug builds across all projects
consistently through the exawind/exawind-config.sh and fine tuning
options from the config file within the current working directory. This will
allow the user to repeat the build process consistently during development and
aid in debugging when things don’t work as expected. The various customizations
possible are described below.

Customizing module load

exawind-builder` provides a default list of modules on most systems that work
for most use cases. However, the user might desire to use different modules for
their custom builds. This is achieved by configuring the modules to be loaded in
the EXAWIND_MODMAP variable. For example, on NREL Peregrine the
default Trilinos build does not enable OpenMP support. In this case, the user
can replace the default trilinos/develop module by specifying the following
in the configuration file.

Use OpenMP enabled version of trilinos module on Peregrine
EXAWIND_MODMAP[trilinos]=trilinos/develop-omp

Enabling/Disabling TPLs

See project-specific documentation in Reference to see what variables can
be used to enable/disable various options for different projects.

Control OpenMP and CUDA
ENABLE_OPENMP=ON
ENABLE_CUDA=OFF

Set debug/release options
BUILD_TYPE=RELEASE

Disable TIOGA and OpenFAST, but enable HYPRE when building Nalu-Wind
ENABLE_TIOGA=OFF
ENABLE_OPENFAST=OFF
ENABLE_HYPRE=ON

Using custom builds of libraries

During development, the user might desire to use a different branch of a
dependency than what the default system-wide installation provides. For example,
the user might want to use a different branch of OpenFAST when developing
advanced FSI capability within Nalu-Wind. The user can bypass the module
search/load process by defining ROOT_DIR
variable for the corresponding dependency. The following example shows how to
customize the TPLs used for building nalu-wind

Always provide our own Trilinos build
export TRILINOS_ROOT_DIR=${EXAWIND_INSTALL_DIR}/trilinos

Override TPLs used to build nalu-wind
export OPENFAST_ROOT_DIR=${EXAWIND_INSTALL_DIR}/openfast-dbg
export HYPRE_ROOT_DIR=${EXAWIND_INSTALL_DIR}/hypre-omp

Overriding default behavior

In rare circumstances, it will be necessary for the user to create a copy of the
build script and edit it manually to customize the build. A build script with
default parameters is shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	#!/bin/bash
#
ExaWind build script for project: trilinos
#
Autogenerated for peregrine and gcc
#
1. See https://exawind.github.io/exawind-builder for documentation
2. Use new-script.sh to regenerate this script
#

#
Setup variables used by functions
#
export EXAWIND_SRCDIR=${HOME}/exawind/exawind-builder
export EXAWIND_COMPILER=gcc
export EXAWIND_SYSTEM=peregrine
export EXAWIND_CODE=trilinos
export EXAWIND_CFGFILE=exawind-config

#
Source the core, system, and project specific build scripts
#
source ${EXAWIND_SRCDIR}/core.bash
source ${EXAWIND_SRCDIR}/envs/${EXAWIND_SYSTEM}.bash
source ${EXAWIND_SRCDIR}/codes/${EXAWIND_CODE}.bash

Path to ExaWind project and install directories
export EXAWIND_PROJECT_DIR=${EXAWIND_PROJECT_DIR:-${HOME}/exawind}
export EXAWIND_INSTALL_DIR=${EXAWIND_INSTALL_DIR:-${EXAWIND_PROJECT_DIR}/install}
export EXAWIND_CONFIG=${EXAWIND_CONFIG:-${EXAWIND_PROJECT_DIR}/${EXAWIND_CFGFILE}.sh}

Source any user specific configuration (see documentation)
exawind_load_user_configs

Path to the source directory (absolute or relative to build directory)
TRILINOS_SOURCE_DIR=${TRILINOS_SOURCE_DIR:-..}
Path where `make install` will install files for this project
TRILINOS_INSTALL_PREFIX=${TRILINOS_INSTALL_PREFIX:-${EXAWIND_INSTALL_DIR}/trilinos}

########## BEGIN user specific configuration ###########

########## END user specific configuration ###########

Execute main function (must be last line of this script)
if [["${BASH_SOURCE[0]}" != "${0}"]] ; then
 exawind_env && exawind_proj_env
else
 exawind_main "$@"
fi

The struture of the build script is the same regardless of the machine,
compiler, or the project that is being built. Lines 14-36 setup the variables
and functions necessary to detect dependencies and build the software, please do
not edit these lines unless you know what you are doing. Lines 45-49 should not
be modified either, and must always be the end of the script. Lines added to the
script after this section will not affect the configure and build process. User
specific configuration and customization should occur within the block indicated
by lines 40-42. User might want to configure the
PROJECTNAME_INSTALL_PREFIX (line 38) when building different
configurations (e.g., release/debug versions, with and without OpenMP, etc.) so
as to have different builds side by side. It is, however, recommended that the
user customize this variable in the exawind-config.sh local to the build
directory.

A good example of what should go in the build script and not the configuration
file is described in the next section. Since bash functions are often project
specific they should be overridden in the build script and not the configuration
file.

Customizing ExaWind environment

The builder provides two additional options that allows the user to further
configure the default environment that is enabled for a given system/compiler
combination.

	To load additional modules, the user can use
EXAWIND_EXTRA_USER_MODULES variable to orovide the list of modules
(in module or spack syntax as appropriate) and have them loaded after the
base modules have been loaded.

	Fine-grained customization is achieved by defining by overriding the function
exawind_env_user_actions() in the exawind-config.sh configuration
file.

Load additional modules and print out some variables
exawind_env_user_actions ()
{
 module load paraview
 echo ${CXX}
 echo ${TRILINOS_ROOT_DIR}
}

Customizing CMake configuration phase

To always pass certain variables, the user can customize the exawind_cmake
function with their own version that adds the extra options permanently every
time cmake is executed. For example, to build nalu-wind with ParaView
Catalyst support:

########## BEGIN user specific configuration ###########

Customize cmake with extra arguments
exawind_cmake ()
{
 local extra_args="$@"

 exawind_cmake_base \
 -DENABLE_PARAVIEW_CATALYST:BOOL=ON \
 -DPARAVIEW_CATALYST_INSTALL_PATH:PATH=${PV_CATALYST_PATH} \
 ${extra_args}
}

########## END user specific configuration ###########

With the above changes, ParaView Catalyst support will always be enabled during
builds. The user still has the option to pass additional parameters through the
command line also for a one-off customization.

Activating ExaWind environment for job submissions

In addition to the build scripts, the bootstrap installation process also
creates a file called exawind/scripts/exawind-env-$COMPILER.sh which can
be sourced to recreate the environment that was used to build the codes. User
can use this to setup the apporpriate environment in a job submission script, or
during interactive work, by simply sourcing this script.

Load the default modules (e.g., MPI)
source ${HOME}/exawind/scripts/exawind-env-gcc.sh

In addition to loading the default modules, sourcing this file will also
introduce a bash command exawind_load_deps that can be used to load
additional modules within the bash environment. For example, to access
ncdump available in the netcdf module on any system, the user can
execute the following

Activate exawind environment
source ${HOME}/exawind/scripts/exawind-env-gcc.sh
load the NetCDF module or spack build
exawind_load_deps netcdf

Now ncdump should be available in your PATH
ncdump -h <exodus_file>

Adding new system configuration

This section documents the process of adding a new system configuration to
exawind-builder. Currently, exawind-builder has two major modes of
operation: the bootstrap mode, and the software configuration and build
mode. The bootstrap mode sets up the basic :ref:<exawind_dir_layout>,
configures spack (if necessary), and builds all the dependencies required to
compile Trilinos. In the software build mode the it allows users to configure
(using CMake) and build Trilinos and Nalu-Wind. The basic steps can be
summarized as follows

Preparation

	Determine a unique name for the system. The recommended naming system is
org-system. For example, to create a configuration for ORNL’s Summit
system, we will use ornl-summit as the system name in exawind-builder.
The convention within exawind-builder is to use this system name
consistently to name things: directories containing system-specific
configuration, filenames for system specific environment functions, etc. This
will be described in detail in the later sections of this documentation. The
system specific name will be assigned to EXAWIND_SYSTEM and will be
referred to as ${EXAWIND_SYSTEM} in the following sections.

	Collect necessary data to create a system configuration

Configuration for bootstrap mode

	Create the minimal build environment necessary for running bootstrap mode,
i.e., building dependencies with Spack.

	Create a Spack configuration allowing use of as many of the available
system modules but building the rest within Spack.

Configuration for build mode

	Create necessary system environment functions to allow users to build
Nalu-Wind using different compiler configurations and, optionally, with GPU
support.

Note

	Important: It must be noted that the configuration steps for bootstrap
mode are optional. Users can use -s spack for system and have
Spack build the entire dependency stack on a new system. The disadvantage
of this approach is the long build time for dependencies (particularly MPI)
and not being able to use the libraries that have been optimized for the
target system (again MPI that might be build with Infiniband, SLURM
support, etc.)

	exawind-builder currently doesn’t follow the recommended system naming
convention for several legacy systems (NREL Peregrine and Eagle, NERSC
Cori, etc.). The builder evolved from several one-off build scripts and
the old names have been retained to preserve backwards compatibility.

	Nalu-Wind tracks the develop branch of Trilinos for its latest version.
This is necessary because ExaWind project has performance and scalability
as its primary objectives, and this often requires the latest improvements
to Trilinos solvers and Sierra Toolkit (STK) packages.

	The exawind-builder documentation often only mentions Trilinos as a
prerequisite for building Nalu-Wind. However, the process described for
building Trilinos and Nalu-Wind should be used to build other prerequisites
such as HYPRE, OpenFAST, and TIOGA.

Determine system configuration

	Determine what compiler suites you want to support/use on the system, e.g.,
GCC, Intel, LLVM/Clang, IBM XL, etc.

	Determine what software is already available on the system that can be used
and what we will need to build ourselves. It is strongly recommended that the
user build HDF5, NetCDF, and parallel NetCDF (pNetCDF) through Spack always
regardless of whether these modules are available on the system. The Exawind
team has experienced a lot of issues with these libraries that lead to
runtime errors when loading Exodus files in parallel.

	Determine whether you want to build shared or static libraries. Ensure that
the libraries available on the login or compute nodes used to build the codes
are also available on the nodes where the runs will be performed. When in
doubt opt for static library builds, this will increase the size of the
executable but is the most robust for the end user.

	Determine whether you will be able to download packages (during bootstrap
phase) through curl or wget, or if you will have issues
with SSL certificates or need proxy servers.

	Determine how many parallel builds you are allowed to execute on your system.
We will use this to limit the launch of parallel jobs by spack and
exawind-builder. When in doubt, 4-8 parallel jobs is a safe number.

Create skeleton directory structure

We will create a minimal exawind structure to clone exawind-builder and add
the necessary system files.

Create top-level exawind directory structure
mkdir -p ${HOME}/exawind/{scripts,install,source}
cd ${HOME}/exawind
git clone git@github.com:exawind/exawind-builder.git

Change the protocol from git to https://` if you have issues cloning using
git transport over SSH. For the rest of this documentation,
exawind-builder will refer to the path
$HOME/exawind/exawind-builder, please adjust appropriately if you are
using a non-standard installation location for exawind.

Create minimal bootstrap environment

This step involves loading the necessary compiler, MPI, and CMake modules for
use with Spack when running the bootstrap script. This step is optional and
is only necessary if the login environment on a system does not correspond to
what the user intends to use to build the software. If a specific environment
must be setup before running bootstrap, then we will create a
system specific file $EXAWIND_SYSTEM.bash in
exawind-builder/etc/boostrap directory. The following example shows the
contents of nrel-eagle.bash that loads modules necessary to execute
bootstrap command on NREL’s Eagle cluster.

#!/bin/bash

Remove any user modules that might conflict
module purge

Default build is using GCC compilers
module load gcc/7.3.0
Load the latest OpenMPI version (build with CUDA support)
module load openmpi/3.1.3

Tip

	To avoid strange linking errors during the build mode, it is recommended
that the bootsrap environment match the final environment you will use in
the system environment specification.

	If your system is behind a firewall, it might be necessary to configure
appropriate proxies for HTTP and HTTPS (e.g., SNL systems), look at
etc/bootstrap/snl-ghost.bash for examples.

	If you experience spurious build errors, you might need to configure the
temporary directory used by the build systems by configuring the TMPDIR
variable to point to a scratch directory.

Create Spack configuration

In this step we will create exact specifications for the compilers spack will
use, pin the package versions for all the dependencies, instruct spack which
pre-installed dependencies on the system we will use, and (optionally) tell
spack about insecure SSL transport requirements and/or limits on the parallel
jobs. A system-specific spack configuration is generated by creating a
subdirectory exawind-builder/etc/spack/$EXAWIND_SYSTEM/. We will always
create two files compilers.yaml and packages.yaml and an
optional config.yaml within this directory based on specific
requirements for the system.

Spack compiler configuration

The easiest way to determine the compiler configurations available is to load
the necessary modules on your system and run spack’s compiler detection command
as shown below:

Load all necessary modules
Clone a throwaway spack repo if necessary
cd ${HOME}/tmp
git clone https://github.com/spack/spack.git
Activate the spack environment (assuming bash shell)
source spack/share/spack/setup-env.sh

Let spack detect compilers
spack compiler find

The above step creates a file $HOME/.spack/$(spack arch
-p)/compilers.yaml that can be used as the basis for creating your compiler
configuration. This YAML file contains a list of compilers that was detected by
spack. Please edit this file and keep only the compilers you want to add to
exawind-builder. We recommend removing older versions of GCC etc. that you
don’t plan to use. If your desired compiler is not found/detected, you will need
to add entries manually. In this case, you should note and reuse the variables
operating_system and target from the spack output. Copy the completed
file over to exawind-builder/etc/spack/$EXAWIND_SYSTEM/compilers.yaml

See Spack compilers configuration docs [https://spack.readthedocs.io/en/latest/getting_started.html#compiler-config]
for more details.

Note

Make sure you backup and remove the $HOME/.spack/$(spack arch -p)
directory as the settings lurking here will take precendence over the ones we
will set up using exawind-builder.

Spack package configuration

In this step, we will inform spack the modules/paths of pre-built system
libraries we will want to use and the compilers we want spack to be aware of
when building packages. Start with
exawind-builder/etc/spack/spack/packages.yaml as the basis for building
your packages.yaml file. Take a look at other packages.yaml examples in
the exawind-builder/etc/spack/ sub-directories to see examples of using
system libraries. The general steps involve updating the version, setting
buildable: false and providing the list of modules or paths where the
library is located. The steps are:

	Set the order and precendence of compilers

	Set default package providers for mpi (OpenMPI, MPICH, Intel-MPI, etc.),
blas, lapack

	Set default variants, use ~shared here to enforce static libraries for all
packages spack builds. A good default value is +mpi build_type=Release.

Also see Spack build customization [https://spack.readthedocs.io/en/latest/build_settings.html] for more
information.

Spack config.yaml

This file is optional and is necessary when you want to change some of the
default behaviors of spack. The variables that often require changing are:

	build_jobs – Set this to the number of maximum parallel build jobs you
are allowed to run on the system.

	verify_ssl – On some systems, you might have to set this to false to
be able to download packages.

Please see Spack docs [https://spack.readthedocs.io/en/latest/config_yaml.html#config-yaml] for
other variables that can be configured for your system.

Create system environment configuration

In this step we will create the files necessary to recreate the build
environment when building the software. The system-specific configuration is
implemented as bash functions stored in the file
exawind-builder/envs/$EXAWIND_SYSTEM.bash. This file must implement at
least one function exawind_env_${EXAWIND_COMPILER} where
EXAWIND_COMPILER is the default compiler option supported for this
system. A barebones environment file for a system with only GCC compiler support
is shown here:

#!/bin/bash

Source the default spack functionality
source ${__EXAWIND_CORE_DIR}/envs/spack.bash

Set the maximum parallel build jobs we can execute
export EXAWIND_NUM_JOBS_DEFAULT=8
Set the default compiler to GCC
export EXAWIND_COMPILER_DEFAULT=gcc

exawind_env_gcc ()
{
 module purge
 module load gcc/7.3.0
 module load openmpi/3.1.3

 # Load other dependencies
 exawind_load_deps cmake netlib-lapack
}

exawind_env_clang ()
{
 echo "ERROR: No CLANG environment set up for ${EXAWIND_SYSTEM}"
 exit 1
}

exawind_env_intel ()
{
 echo "ERROR: No Intel environment set up for ${EXAWIND_SYSTEM}"
}

Note

	Please consult the variable reference to see other variables
that can be configured for a system. Do not set the following variables
within a system environment file: EXAWIND_SYSTEM, EXAWIND_COMPILER,
EXAWIND_CODE, EXAWIND_SRCDIR, EXAWIND_PROJECT_DIR, EXAWIND_INSTALL_DIR,
EXAWIND_CONFIG, EXAWIND_CFGFILE, SPACK_ROOT.

	For more complicated build environment support, take a look at the NREL
Eagle [https://github.com/exawind/exawind-builder/blob/master/envs/eagle.bash]
environment file.

Run bootstrap

At this point, exawind-builder has all the information necessary for your
system. Run bootstrap to tell exawind-builder to fetch spack and install
all the dependencies.

Run bootstrap
cd ${HOME}
Run bootstrap from your local exawind-builder
exawind/exawind-builder/bootstrap.sh -c gcc -s ${EXAWIND_SYSTEM}

In case you run into errors and want to tweak the configuration, please delete
the spack directory $HOME/exawind/spack and start a fresh build to
ensure that the final configuration in exawind-builder for your system will
execute without any errors for other users.

If bootstrap succeeds, you should have build scripts in
$HOME/exawind/scripts for the compiler of your choice. Proceed to
Compiling Software to build Trilinos and Nalu-Wind.

Once you have successfully built Nalu-Wind and executed regression tests on the
new system, please consider submitting a pull request to allow other users to
benefit from this configuration when using exawind-builder.

Manual Installation

This section will walk through the steps to creating a basic directory
layout, cloning exawind-builder repository. In this
example, we will create the exawind base directory within the user’s
home directory. Modify this appropriately.

cd ${HOME} # Change this to your preferred location

Create the basic directory layout
mkdir -p exawind/{source,install,scripts}

Clone exawind-builder repo
cd exawind
git clone https://github.com/exawind/exawind-builder.git

Clone nalu-wind that we will use as an example later
cd ../source
git clone https://github.com/exawind/nalu-wind.git

If you are working on a system where the dependencies are already installed in a
shared project location, then you can skip the next location and go to
Generating Build Scripts.

Setting up dependencies

This section details basic steps to install all dependencies from scratch and
have a fully independent installation of the ExaWind software ecosystem. This is
a one-time setup step.

Mac OS X users will need to setup Homebrew as described in Initial Homebrew Setup for Mac OS-X Users
before proceeding.

Install dependencies via spack (all systems)

Setup ExaWind directory structure as described in Exawind directory structure.

	Clone the spack repository

cd ${HOME}/exawind
git clone https://github.com/spack/spack.git

Activate spack (for the remainder of the steps)
source ./spack/share/spack/setup-env.sh

	Copy package specifications for Spack. The file packages.yaml
instructs Spack to use the installed compilers and MPI packages thereby
cutting down on build time. It also pins other packages to specific versions
so that the build is consistent with other machines.

cd ${HOME}/exawind/exawind-builder/etc/spack/osx
cp packages.yaml ${HOME}/.spack/$(spack arch -p)/

The above example shows the configuration of OSX. Choose other appropriate
directory within spack_cfg. Spack configs for other systems can be
adapted from the build-test [https://github.com/Exawind/build-test/tree/master/configs/machines]
repository.

Users can also copy compilers.yaml if desired to override default
compilers detected by spack.

Note

For automatic updates, users can symlink the packages.yaml file within the
spack configuration directory to the version in exawind-builder

ln -s ${HOME}/exawind/exawind-builder/etc/spack/${SYSTEM}/packages.yaml ${HOME}/.spack/$(spack arch -p)/

	Setup compilers to be used by spack. As with packages.yaml, it is
recommended that the users use the compiler configuration provided with
exawind-builder.

cp compilers.yaml ${HOME}/.spack/$(spack arch -p)/

For more flexibility, users can use spack to determine the compilers
available on their system.

spack compiler find

The command will detect all available compiler on users environment and
create a compilers.yaml in the $HOME/.spack/$(spack arch -p).

Note

If you have multiple compilers.yaml in several locations, make
sure that the specs are not conflicting. Also check packages.yaml
to make sure that the compilers are listed in the preferred order for
spack to pick up the right compiler.

	Instruct spack to track packages installed via Homebrew. Note that on most
systems the following commands will run very quickly and will not attempt to
download and build packages.

spack install cmake
spack install mpi
spack install m4
spack install zlib
spack install libxml2
spack install boost

	Install remaining dependencies via Spack. The following steps will download,
configure, and compile packages.

These dependencies must be installed (mandatory)
spack install superlu
spack install hdf5
spack install netcdf
spack install yaml-cpp

These are optional
spack install openfast
spack install hypre
spack install tioga

It is recommended that you build/install Trilinos using the build scripts
described in Using exawind-builder to build software section. The optional dependencies could be
installed via that method also.

	Generate build scripts as described in Generating Build Scripts section. On OS X,
use -s spack for the system when generating the build scripts. For Cori
and SummitDev, use the appropriate system which
will initialize the compiler and MPI modules first and then activate Spack in
the background. You will need to configure at least SPACK_ROOT if
it was not installed in the default location suggested in the directory
layout at the beginning of this section.

Upon successful installation, executing spack find at the command line
should show you the following packages (on Mac OSX)

$ spack find
==> 12 installed packages.
-- darwin-sierra-x86_64 / clang@9.0.0-apple ---------------------
boost@1.67.0 libxml2@2.2 netlib-lapack@3.8.0 superlu@4.3
cmake@3.12.0 m4@1.4.6 openmpi@3.1.1 yaml-cpp@develop
hdf5@1.10.1 netcdf@4.4.1.1 parallel-netcdf@1.8.0 zlib@1.2.8

Generate builder configuration

Create your specific configuration in $HOME/exawind/exawind-config.sh.
A sample file is shown below

Example exawind-config.sh file
#
Note: these variables can be overridden through the script in build directory
#

Specify path to your own Spack install (if not in default location)
export SPACK_ROOT=${HOME}/spack

Track trilinos builds by date
export TRILINOS_INSTALL_DIR=${EXAWIND_INSTALL_DIR}/trilinos-$(date "+%Y-%m-%d")

Specify custom builds for certain packages. The following are only
necessary if you didn't install these packages via spack, but instead are
using your own development versions.
export TRILINOS_ROOT_DIR=${EXAWIND_INSTALL_DIR}/trilinos
export TIOGA_ROOT_DIR=${EXAWIND_INSTALL_DIR}/tioga
export HYPRE_ROOT_DIR=${EXAWIND_INSTALL_DIR}/hypre
export OPENFAST_ROOT_DIR=${EXAWIND_INSTALL_DIR}/openfast

Turn on/off certain TPLs and options
ENABLE_OPENMP=OFF
ENABLE_TIOGA=OFF
ENABLE_OPENFAST=OFF
ENABLE_HYPRE=OFF

See Reference for more details. Note that the default path for Spack
install is $EXAWIND_PROJECT_DIR/spack.

Generating Build Scripts

exawind-builder provides a new-script.sh command to generate build
scripts for combination of system, project, and compiler. The basic usage is shown below

bash$./new-script.sh -h
new-script.sh [options] [output_file]

Options:
 -h - Show help message and exit
 -p <project> - Select project (nalu-wind, openfast, etc)
 -s <system> - Select system profile (spack, peregrine, cori, etc.)
 -c <compiler> - Select compiler type (gcc, intel, clang)

Argument:
 output_file - Name of the build script (default: '$project-$compiler.sh')

So if the user desires to generate a build script for Trilinos on the NERSC Cori
system using the Intel compiler, they would execute the following at the command line

Switch to scripts directory
cd ${HOME}/exawind/scripts

Declare project directory variable (default is parent directory of exawind-builder)
export EXAWIND_PROJECT_DIR=${HOME}/exawind

Create the new script
../exawind-builder/new-script.sh -s cori -c intel -p trilinos

Create a script with a different name
../exawind-builder/new-script.sh -s cori -c intel -p trilinos trilinos-haswell.sh

Creating runtime environment script

exawind-builder provides a create-env.sh command to generate a
source-able script that can be used within job submission scripts as well as to
recreate the environment used to build the code in interactive shells.

create-env.sh [options] [output_file_name]

By default it will create a file called exawind-env-$COMPILER.sh

Options:
 -h - Show help message and exit
 -s <system> - Select system profile (spack, cori, summitdev, etc.)
 -c <compiler> - Select compiler type (gcc, clang, intel, etc.)

Sample usage shown below

Create a new environment file
cd ${HOME}/exawind/scripts

../exawind-builder/create-env.sh -s eagle -c gcc

Source the script within interactive shells
source ./exawind-env-gcc.sh

Load additional modules
exawind_load_deps hdf5 netcdf

It is recommended that the user use exawind_load_deps() instead of
spack load or module load as this has several advantages:
exawind-builder will automatically use spack/module to load depending on the
system you are on, so you can use one command across different systems; this
command will respect EXAWIND_MODMAP and load the appropriate module
that you have configured instead of the defaults on the system; it will
configure CUDA based on ENABLE_CUDA.

Configuring exawind-builder to use Ninja

Ninja [https://ninja-build.org] is a build system that is an alternative to
make. It provides several features of make but is
considerably faster when building code. The speedup is particularly evident when
compiling Trilinos. Since codes used in ExaWind project contain Fortran files,
it requires a special fork [https://github.com/Kitware/ninja] of Ninja
(maintained by Kitware). exawind-builder provides a script
get-ninja.sh to fetch and configure Ninja for builds.

Get Ninja
cd ${HOME}/exawind
./exawind-builder/utils/get-ninja.sh

Note

You will need to execute cmake_full to force CMake to recreate build
files using Ninja if they were previously configured to use
Makefiles.

Compiling Nalu-Wind

At this point you have manually recreated all the steps performed by the
bootstrap process. Please follow Compiling Software to build Trilinos
and Nalu-Wind

Reference

Configuration variables

This section documents all the available options that the user can use to
customize the build process. It is divided into common options (most begin with
EXAWIND_ prefix) and code-specific parameters under individual projects.

ExaWind Builder configuration

	
EXAWIND_SYSTEM

	The system code used to determine modules to be loaded. Please see
available systems for a list of valid systems
supported by exawind-builder.

	
EXAWIND_COMPILER

	The compiler to be used for the build. Valid options are gcc, clang,
intel, and xl. Not all compiler options are available on all systems.
Please consult available compilers on individual systems.

	
EXAWIND_CODE

	The software that is being compiled. This is used to load the
project-specific CMake configuration as well as to perform conditional
evaluation of code within $EXAWIND_PROJECT_DIR/exawind-config.sh

	
EXAWIND_SRCDIR

	Absolute path to the location of exawind-builder. This is automatically
generated by the script and should not be changed.

	
EXAWIND_PROJECT_DIR

	The root directory where all ExaWind code is located. In the
Introduction section the examples used $HOME/exawind.

By default, the build script generator will initialize
this to be the parent directory of EXAWIND_SRCDIR. If you prefer
to keep exawind-builder and your base install directory separate, then
export this variable to the appropriate value before invoking
new-script.sh command.

	
EXAWIND_INSTALL_DIR

	The default location where custom builds are installed. Default value is
$EXAWIND_PROJECT_DIR/install. By default, each project is installed
within its own directory ($EXAWIND_INSTALL_DIR/$PROJECT_NAME).
User can change this by setting appropriate value for the project
install variable PROJECTNAME_INSTALL_PREFIX.

	
EXAWIND_CONFIG

	Absolute path to the ExaWind builder configuration file. Default value is
$EXAWIND_PROJECT_DIR/exawind-config.sh.

Note

The variables described above are set when generating build scripts and rarely needs to be changed by the user.

	
EXAWIND_CFGFILE

	The basename of the file where configuration is stored. The default value is
exawind-config.

	
EXAWIND_MODMAP

	A dictionary containing the exact resolution of the module that must be
loaded. For example, on NREL Peregrine the builder will load
trilinos/develop module by default. However, if the user prefers the
develop branch with OpenMP enabled, then they can override it by
providing the following either in the build script or the
exawind-config.sh configuration file.

Use develop branch of trilinos that has OpenMP enabled
EXAWIND_MODMAP[trilinos]=trilinos/develop-omp

For system configuration using Spack, the compiler flag (e.g., %gcc) is
automatically added to the spec.

	
EXAWIND_MOD_LOADER

	This variable determins whether spack or module is used
to load dependencies when compiling codes. The default value is set by the
system that users are using exawind-builder on and rarely needs to be
changed by the user.

	
EXAWIND_EXTRA_USER_MODULES

	A list of extra modules that must be loaded before performing any actions.

	
EXAWIND_NUM_JOBS

	The maximum number of parallel build jobs to execute when make is
invoked. Setting this variable within the build script is equivalent to
passing -j X at the command line for make.

	
EXAWIND_CUDA_WRAPPER

	Absolute path to the location of nvcc_wrapper script provided by
Kokkos. The default path is assumed to be
$EXAWIND_PROJECT_DIR/exawind-builder/utils/nvcc_wrapper

	
EXAWIND_CUDA_SM

	Variable used to set the target architecture for CUDA compilations. This
variable is a numeric value. For example, when targeting Volta cards the
desired nvcc option is -arch=sm_70, then set this variable to 70.
Currently, used by non-Trilinos codes like HYPRE, PIFUS, and TIOGA.

	
KOKKOS_ARCH

	The architectures for which Kokkos builds are optimized. See Kokkos Wiki [https://github.com/kokkos/kokkos/wiki/Compiling#table-43-architecture-variables]
for further information. Multiple architectures can be separated by commas.

	
CUDA_LAUNCH_BLOCKING

	Variable set to control Kokkos configuration. Defaults to 1.

See Kokkos Wiki [https://github.com/kokkos/kokkos/wiki/Compiling#43-using-trilinos-cmake-build-system] for more details.

	
CUDA_MANAGED_FORCE_DEVICE_ALLOC

	Variable necessary when CUDA UVM is enabled (currently required for certain
Trilinos packages) that manages device allocation. Default value is 1.

See Kokkos Wiki [https://github.com/kokkos/kokkos/wiki/Compiling#43-using-trilinos-cmake-build-system] for more details.

	
SPACK_ROOT

	Absolute path to the spack installation, if using spack to manage
dependencies. The default path is $EXAWIND_PROJECT_DIR/spack.

	
SPACK_COMPILER

	Variable controlling the compiler used by spack to install dependencies.

Variables controlling project properties

These variables all start with the project name. The convention is that
the project name is converted to all upper case and any dashes are replaced by
underscores. For example, parallel-netcdf becomes
PARALLEL_NETCDF_ROOT_DIR, SuperLU becomes SUPERLU_ROOT_DIR and so on.

	
PROJECTNAME_ROOT_DIR

	The use can declare a variable (e.g., OPENFAST_ROOT_DIR) to provide a
path to a custom installation of a particular dependency and bypass the
module search and load process. A typical example is to provide the following
line either in the build script or the exawind-config.sh
configuration file.

export OPENFAST_ROOT_DIR=${EXAWIND_INSTALL_DIR}/openfast-dev-debug

The primary purpose of this variable is to indicate this as the search path
during the build process of other projects.

Currently the following ROOT_DIR variables are used within the scripts:

BOOST_ROOT_DIR
FFTW_ROOT_DIR
HDF5_ROOT_DIR
HYPRE_ROOT_DIR
NALU_WIND_ROOT_DIR
NETCDF_ROOT_DIR
OPENFAST_ROOT_DIR
PARALLEL_NETCDF_ROOT_DIR
SUPERLU_ROOT_DIR
TIOGA_ROOT_DIR
TRILINOS_ROOT_DIR
YAML_CPP_ROOT_DIR
ZLIB_ROOT_DIR

	
PROJECTNAME_INSTALL_PREFIX

	The location where make install will install the project. The default
value for this variable is ${EXAWIND_INSTALL_DIR}/${PROJECT_NAME}

	
PROJECTNAME_SOURCE_DIR

	This variable is used in situations where the build directory is not a
subdirectory located at the root of the project source directory. The default
value is just the parent directory from where the script is executed.

Variables controlling build process

This section describes various environment variables that control the build
process for individual projects.

Common build variables

	
BUILD_TYPE

	Control the type of build, e.g., Release, Debug, RelWithDebInfo, etc.

	
BUILD_SHARED_LIBS

	Control whether shared libraries or static libraries are built. Valid values:
ON or OFF.

	
BLASLIB

	Path to BLAS/LAPACK libraries.

	
EXAWIND_MKL_LIBNAMES

	List of MKL libraries to link to when compiling with Intel MKL. Used as an
alterative to BLASLIB, see also EXAWIND_MKL_LIBDIRS.

	
EXAWIND_MKL_LIBDIRS

	Path to Intel MKL libraries, always used in conjunction with
EXAWIND_MKL_LIBNAMES.

	
ENABLE_OPENMP

	Boolean flag indicating whether OpenMP is enabled. (default: ON)

	
ENABLE_CUDA

	Boolean flag indicating whether CUDA is enabled. The default value is OFF on
most architectures. Exceptions are: ORNL SummitDev, SNL ascicgpu.

Nalu-Wind

	
ENABLE_FFTW

	Boolean flag indicating whether FFTW library is activated when building
Nalu-Wind. (default: ON)

	
ENABLE_OPENFAST

	Boolean flag indicating whether OPENFAST TPL is activated when building
Nalu-Wind. (default: ON)

	
ENABLE_HYPRE

	Boolean flag indicating whether HYPRE TPL is activated when building
Nalu-Wind. (default: ON)

	
ENABLE_TIOGA

	Boolean flag indicating whether TIOGA TPL is activated when building
Nalu-Wind. (default: ON)

	
ENABLE_TESTS

	Boolean flag indicating whether tests are enabled when building Nalu-Wind.
(default: ON)

	
EXAWIND_ARCH_FLAGS

	Additional architecture specific optimization flags, e.g., to enable SIMD
optimizations.

OpenFAST

	
FAST_CPP_API

	Boolean flag indicating whether the C++ API is enabled. (default: ON)

Other variables used: BUILD_SHARED_LIBS, BUILD_TYPE, and
BLASLIB.

Trilinos

Trilinos uses ENABLE_OPENMP, ENABLE_CUDA and
BLASLIB if configured. OpenMP is enabled by default, and CMake
attempts to automatically detect BLAS/LAPACK.

CUDA is enabled by default on summitdev, snl-ascicgpu, and is optionally
available on eagle.

	
EXAWIND_USE_BLASLIB

	Use BLASLIB variable declared by Intel MKL for BLAS/LAPACK. The
default is ON. The user can set this to OFF to force builds with
Spack’s netlib-lapack package.

HYPRE

HYPRE uses ENABLE_OPENMP and ENABLE_CUDA if configured.
Both OpenMP and CUDA are disabled by default for HYPRE builds.

	
ENABLE_BIGINT

	Boolean flag indicating whether 64-bit integer support is enabled. (default: ON)

Function reference

User customization functions

	
exawind_env_user_actions()

	A function that is called after the base environment is loaded to allow the
user to further customize the environment that will be used to configure and
compile software.

Core functions

	
exawind_purge_env()

	Purge an Exawind environment created by sourcing bash files, e.g.,
exawind-env-gcc.sh. If this function exists in your environment, chances
are that the environment was sourced previously. Calling this function will
unset all exawind-builder related environment variables and functions, and
reset the environment to a clean state. Use this function if you see spurious
errors caused by conflicting environment variable settings.

	
exawind_save_func old new

	Create a new function with the implementation of the old one. This is used to
override functions within bash but still retain the ability to call the old
function within the new one.

Example to override the cmake_function
exawind_save_func exawind_cmake exawind_cmake_orig

exawind_cmake ()
{
 echo "Executing CMAKE"
 exawind_cmake_orig "$@"
}

	
exawind_env()

	Activates the environment for a particular system and compiler combination.
The actual function is implemented in system specific files and are of the
form exawind_env_${EXAWIND_COMPILER}.

	
exawind_cmake [arg1 [arg2 ...]]

	Invoke CMake configuration step for a particular project with additional
arguments. If the project defines exawind_cmake_${EXAWIND_SYSTEM} then
that function is invoked, else it invokes exawind_cmake_base(). All
software codes are required to provide the base function.

	
exawind_cmake_full()

	Removes CMakeCache.txt and CMakeFiles directory before
invoking exawind_cmake().

	
exawind_make [args...]

	Invokes make to compile the project. With no arguments, it will invoke
make -j ${EXAWIND_NUM_PROCS} otherwise it will pass user arguments to
make. Note, if passing arguments you must also pass -j <N> for
parallel builds, e.g., make VERBOSE=1 -j 12.

	
exawind_ctest [args...]

	Invokes CTest runs if the software supports tests via CTest.

exawind_ctest --output-on-failure -R ablNeutralEdge

	
exawind_run [args...]

	Runs an arbitrary command within the environment used to build the code

	
exawind_guess_make_type()

	Helper function to determine whether to use make or
ninja when compiling the code.

System specific functions

	
exawind_spack_env()

	Configure Spack environment and set up module loading

	
exawind_env_${EXAWIND_COMPILER}

	Configuration for the ${EXAWIND_COMPILER} if supported on this
particular system.

	
exawind_load_modules [dep ...]

	Uses module load command to load modules. This is a specialization
of exawind_load_deps() on systems that have all dependencies available
via modules. Examples are: NREL Eagle, Peregrine, and Rhodes.

	
exawind_load_spack [dep ...]

	Uses spack load command to load dependencies. This is a
specialization of exawind_load_deps() on most systems which uses spack
to manage all dependencies.

	
exawind_load_deps dep [dep ...]

	Loads the required dependencies either via spack or module load. Users should
use this command elsewhere.

	
exawind_default_install_dir dep

	Check if the default installation location for a project
(${EXAWIND_INSTALL_DIR}/${PROJECT_NAME}) exists and if so set
${PROJECTNAME_ROOT_DIR}.

Project specific functions

	
exawind_cmake_base [args...]

	Base implementation of CMake configure for the project.

	
exawind_project_env()

	Additional project configuration. Usually this just is a simple call to
exawind_load_deps() with the list of required dependencies.

	
exawind_cmake_${EXAWIND_SYSTEM}

	Optional system-specific configuration. For example, on Mac OSX nalu-wind
declares the following function to enable running CTest on more than four MPI
ranks with OpenMPI v3.0.0 or greater.

exawind_cmake_osx ()
{
 local extra_args="$@"
 exawind_cmake_base \
 -DCMAKE_EXPORT_COMPILE_COMMANDS:BOOL=ON \
 -DMPIEXEC_PREFLAGS:STRING='"--use-hwthread-cpus --oversubscribe"' \
 ${extra_args}
}

Index

 Symbols
 | B
 | E
 | P
 | S

Symbols

 	
 	${EXAWIND_COMPILER}

 	
 	${PROJECTNAME_ROOT_DIR}

B

 	
 	BLASLIB, [1], [2], [3]

 	
 	BUILD_SHARED_LIBS

 	BUILD_TYPE

E

 	
 	ENABLE_CUDA, [1], [2]

 	ENABLE_OPENMP, [1]

 	
 environment variable

 	${EXAWIND_COMPILER}

 	${PROJECTNAME_ROOT_DIR}

 	BLASLIB, [1], [2], [3], [4]

 	BUILD_SHARED_LIBS, [1]

 	BUILD_TYPE, [1]

 	CUDA_LAUNCH_BLOCKING

 	CUDA_MANAGED_FORCE_DEVICE_ALLOC

 	ENABLE_BIGINT

 	ENABLE_CUDA, [1], [2], [3]

 	ENABLE_FFTW

 	ENABLE_HYPRE

 	ENABLE_OPENFAST

 	ENABLE_OPENMP, [1], [2]

 	ENABLE_TESTS

 	ENABLE_TIOGA

 	EXAWIND_ARCH_FLAGS

 	EXAWIND_CFGFILE, [1]

 	EXAWIND_CODE

 	EXAWIND_COMPILER, [1]

 	EXAWIND_CONFIG, [1]

 	EXAWIND_CUDA_SM

 	EXAWIND_CUDA_WRAPPER

 	EXAWIND_EXTRA_USER_MODULES, [1]

 	EXAWIND_INSTALL_DIR

 	EXAWIND_MKL_LIBDIRS, [1]

 	EXAWIND_MKL_LIBNAMES, [1]

 	EXAWIND_MODMAP, [1], [2]

 	EXAWIND_MOD_LOADER

 	EXAWIND_NUM_JOBS, [1]

 	EXAWIND_PROJECT_DIR, [1]

 	EXAWIND_SRCDIR, [1]

 	EXAWIND_SYSTEM, [1], [2]

 	EXAWIND_USE_BLASLIB

 	FAST_CPP_API

 	KOKKOS_ARCH

 	PROJECTNAME_INSTALL_PREFIX, [1]

 	PROJECTNAME_ROOT_DIR, [1], [2], [3]

 	PROJECTNAME_SOURCE_DIR

 	SPACK_COMPILER, [1]

 	SPACK_ROOT, [1]

 	project install variable PROJECTNAME_INSTALL_PREFIX

 	
 	EXAWIND_CFGFILE

 	exawind_cmake_full() (built-in function)

 	EXAWIND_COMPILER

 	EXAWIND_CONFIG

 	exawind_env() (built-in function)

 	exawind_env_user_actions() (built-in function)

 	EXAWIND_EXTRA_USER_MODULES

 	exawind_guess_make_type() (built-in function)

 	EXAWIND_MKL_LIBDIRS

 	EXAWIND_MKL_LIBNAMES

 	EXAWIND_MODMAP, [1]

 	EXAWIND_NUM_JOBS

 	EXAWIND_PROJECT_DIR

 	exawind_project_env() (built-in function)

 	exawind_purge_env() (built-in function)

 	exawind_spack_env() (built-in function)

 	EXAWIND_SRCDIR

 	EXAWIND_SYSTEM, [1]

P

 	
 	project install variable PROJECTNAME_INSTALL_PREFIX

 	
 	PROJECTNAME_INSTALL_PREFIX

 	PROJECTNAME_ROOT_DIR, [1], [2]

S

 	
 	SPACK_COMPILER

 	
 	SPACK_ROOT

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 ExaWind Build Scripts User Manual

 		
 Introduction

 		
 Use cases

 		
 Exawind directory structure

 		
 Setting up exawind-builder

 		
 Basic installation for all systems

 		
 Setting up custom ExaWind python environment

 		
 Initial Homebrew Setup for Mac OS-X Users

 		
 Using exawind-builder to build software

 		
 Configuring exawind-builder

 		
 Compiling Software

 		
 Available tasks in the build script

 		
 Customizing the build process

 		
 Customizing module load

 		
 Enabling/Disabling TPLs

 		
 Using custom builds of libraries

 		
 Overriding default behavior

 		
 Activating ExaWind environment for job submissions

 		
 Adding new system configuration

 		
 Determine system configuration

 		
 Create skeleton directory structure

 		
 Create minimal bootstrap environment

 		
 Create Spack configuration

 		
 Spack compiler configuration

 		
 Spack package configuration

 		
 Spack config.yaml

 		
 Create system environment configuration

 		
 Run bootstrap

 		
 Manual Installation

 		
 Setting up dependencies

 		
 Install dependencies via spack (all systems)

 		
 Generate builder configuration

 		
 Generating Build Scripts

 		
 Creating runtime environment script

 		
 Configuring exawind-builder to use Ninja

 		
 Compiling Nalu-Wind

 		
 Reference

 		
 Configuration variables

 		
 ExaWind Builder configuration

 		
 Variables controlling project properties

 		
 Variables controlling build process

 		
 Function reference

 		
 User customization functions

 		
 Core functions

 		
 System specific functions

 		
 Project specific functions

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

